If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-48x^2+10=0
a = -48; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-48)·10
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{30}}{2*-48}=\frac{0-8\sqrt{30}}{-96} =-\frac{8\sqrt{30}}{-96} =-\frac{\sqrt{30}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{30}}{2*-48}=\frac{0+8\sqrt{30}}{-96} =\frac{8\sqrt{30}}{-96} =\frac{\sqrt{30}}{-12} $
| 2(39–Y)+4y=110 | | m+54=8 | | 78-6y=110 | | 2×-5=3x-15 | | -6(1-m)=-2m | | -7y+21=35 | | 2x+5*5=7 | | t-1=-15(-8) | | 4^3x+1=10 | | 6x÷4x=10 | | 6t÷4t=10 | | -2x^2+4=86 | | 9x^2-108=0 | | 8x−3(2x−4)=3(x−6) | | -2x^2+4=-86 | | 7(4x-3)-4(3x+8)+25=3(4x+9)-43 | | 12x^2+29x=30+2x^2+9x | | 9+4x^2=57 | | .0005x=100000 | | 7z/12=6z/8 | | Z=5-9i | | 3y=-1+10 | | 3y+-1=10 | | p=72p+9 | | b3+ 11=14 | | (4x+1)/7=(x-2) | | 4x+1=12-4x | | x–3-8=1 | | (D^3-4D^2+6D-4)y=0 | | 31/93=8/x | | -33-5x=(-5+2x) | | 3(1+2a)+2=17+3a |